Bindungs- und Verbrennungs-Enthalpien

Zur Spaltung der Bindungen muss ΔH_{X-Y} mit **positivem** Vorzeichen (Energie-Aufwand), bei der Ausbildung mit **negativem** Vorzeichen (Energie-Freisetzung) verwendet werden. Normalerweise tabelliert man Werte mit negativem Vorzeichen, so dass einzelne ungebundene Atome den Referenzzustand mit Energie 0 darstellen.

Die tabellierten Werte sind Durchschnitts-Werte, die beträchtlich vom tatsächlichen Wert in einem gegebenen Molekül abweichen können.

A. Bindungs-Enthalpien von Einfachbindungen in kJ · mol⁻¹

	Br	С	Cl	F	н	I	N	0	Р	S	Si
Br	-193	-285	-219	-249	-366	-178		-234	-264	-218	-325
С	-285	-348	-339	-489	-413	-218	-305	-358	-264	-272	-285
Cl	-219	-339	-242	-253	-431	-211	-192	-208	-322	-271	-397
F	-249	-489	-253	-159	-567	-280	-278	-193	-503	-327	-586
н	-366	-413	-431	-567	-436	-298	-391	-463	-323	-367	-318
I	-178	-218	-211	-280	-298	-151		-234	-184		-234
N		-305	-192	-278	-391		-163	-201			
О	-234	-358	-208	-193	-463	-234	-201	-146	-335		-451
Р	-264	-264	-322	-503	-323	-184		-335	-172		
s	-218	-272	-271	-327	-367					-255	-293
Si	-325	-285	-397	-586	-318	-234		-451		-293	-176

B. Bindungs-Enthalpien von Mehrfachbindungen in kJ · mol⁻¹

C=C	-614	C≡N	-891		N=N	-418	0=	:О	-498
C≡C	-839	C=O	-745	-	N≡N	-945			
C=N	-615	C=S	-536	-	N=O	-607			

C. Verbrennungs-Enthalpie organischer Stoffe

Die Verbrennungsenergie (Genauer: Verbrennungsenthalpie) von organischen Stoffen lässt sich aus der Anzahl schwach polar gebundener Bindungs-Elektronenpaare abschätzen (Elektronenpaare aus C-C, C=C, C≡C, C=H):

Bei vollständigen Verbrennungen werden rund 220 kJ Energie pro mol Bindungselektronenpaare in schwach polaren Bindungen frei (negatives Vorzeichen), also rund **440 kJ pro mol umgesetztes O**₂.

D. Energien zwischenmolekularer Kräfte (≠ Bindung!)

Das Brechen von Van der Waals-Wechselwirkungen kostet bei organischen Stoffen ganz grob 1 kJ/mol pro C-Atom, das Brechen von Wasserstoffbrücken WBR ganz grob 10 kJ/mol WBR.

E. Elektronegativitäten

In diesen Aufgaben verwendete Elektronegativitäten

			Elektronegativität
1	Н	Wasserstoff	2.2
5	В	Bor	2.04
6	С	Kohlenstoff	2.55
7	N	Stickstoff	3.04
8	0	Sauerstoff	3.44
9	F	Fluor	3.98
14	Si	Silicium	1.9
15	Р	Phosphor	2.19
16	S	Schwefel	2.58
17	Cl	Chlor	3.16
32	Ge	Germanium	2.01
33	As	Arsen	2.18
34	Se	Selen	2.55
35	Br	Brom	2.96
53	I	lod	2.66